Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38653906

RESUMEN

PURPOSE: Mammographic density phenotypes, adjusted for age and body mass index (BMI), are strong predictors of breast cancer risk. BMI is associated with mammographic density measures, but the role of circulating sex hormone concentrations is less clear. We investigated the relationship between BMI, circulating sex hormone concentrations, and mammographic density phenotypes using Mendelian randomization (MR). METHODS: We applied two-sample MR approaches to assess the association between genetically predicted circulating concentrations of sex hormones [estradiol, testosterone, sex hormone-binding globulin (SHBG)], BMI, and mammographic density phenotypes (dense and non-dense area). We created instrumental variables from large European ancestry-based genome-wide association studies and applied estimates to mammographic density phenotypes in up to 14,000 women of European ancestry. We performed analyses overall and by menopausal status. RESULTS: Genetically predicted BMI was positively associated with non-dense area (IVW: ß = 1.79; 95% CI = 1.58, 2.00; p = 9.57 × 10-63) and inversely associated with dense area (IVW: ß = - 0.37; 95% CI = - 0.51,- 0.23; p = 4.7 × 10-7). We observed weak evidence for an association of circulating sex hormone concentrations with mammographic density phenotypes, specifically inverse associations between genetically predicted testosterone concentration and dense area (ß = - 0.22; 95% CI = - 0.38, - 0.053; p = 0.009) and between genetically predicted estradiol concentration and non-dense area (ß = - 3.32; 95% CI = - 5.83, - 0.82; p = 0.009), although results were not consistent across a range of MR approaches. CONCLUSION: Our findings support a positive causal association between BMI and mammographic non-dense area and an inverse association between BMI and dense area. Evidence was weaker and inconsistent for a causal effect of circulating sex hormone concentrations on mammographic density phenotypes. Based on our findings, associations between circulating sex hormone concentrations and mammographic density phenotypes are weak at best.

2.
medRxiv ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38496424

RESUMEN

Background: Nineteen genomic regions have been associated with high-grade serous ovarian cancer (HGSOC). We used data from the Ovarian Cancer Association Consortium (OCAC), Consortium of Investigators of Modifiers of BRCA1/BRCA2 (CIMBA), UK Biobank (UKBB), and FinnGen to identify novel HGSOC susceptibility loci and develop polygenic scores (PGS). Methods: We analyzed >22 million variants for 398,238 women. Associations were assessed separately by consortium and meta-analysed. OCAC and CIMBA data were used to develop PGS which were trained on FinnGen data and validated in UKBB and BioBank Japan. Results: Eight novel variants were associated with HGSOC risk. An interesting discovery biologically was finding that TP53 3'-UTR SNP rs78378222 was associated with HGSOC (per T allele relative risk (RR)=1.44, 95%CI:1.28-1.62, P=1.76×10-9). The optimal PGS included 64,518 variants and was associated with an odds ratio of 1.46 (95%CI:1.37-1.54) per standard deviation in the UKBB validation (AUROC curve=0.61, 95%CI:0.59-0.62). Conclusions: This study represents the largest GWAS for HGSOC to date. The results highlight that improvements in imputation reference panels and increased sample sizes can identify HGSOC associated variants that previously went undetected, resulting in improved PGS. The use of updated PGS in cancer risk prediction algorithms will then improve personalized risk prediction for HGSOC.

3.
medRxiv ; 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38410445

RESUMEN

The 313-variant polygenic risk score (PRS313) provides a promising tool for breast cancer risk prediction. However, evaluation of the PRS313 across different European populations which could influence risk estimation has not been performed. Here, we explored the distribution of PRS313 across European populations using genotype data from 94,072 females without breast cancer, of European-ancestry from 21 countries participating in the Breast Cancer Association Consortium (BCAC) and 225,105 female participants from the UK Biobank. The mean PRS313 differed markedly across European countries, being highest in south-eastern Europe and lowest in north-western Europe. Using the overall European PRS313 distribution to categorise individuals leads to overestimation and underestimation of risk in some individuals from south-eastern and north-western countries, respectively. Adjustment for principal components explained most of the observed heterogeneity in mean PRS. Country-specific PRS distributions may be used to calibrate risk categories in individuals from different countries.

4.
Hum Mol Genet ; 33(8): 687-697, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38263910

RESUMEN

BACKGROUND: Expansion of genome-wide association studies across population groups is needed to improve our understanding of shared and unique genetic contributions to breast cancer. We performed association and replication studies guided by a priori linkage findings from African ancestry (AA) relative pairs. METHODS: We performed fixed-effect inverse-variance weighted meta-analysis under three significant AA breast cancer linkage peaks (3q26-27, 12q22-23, and 16q21-22) in 9241 AA cases and 10 193 AA controls. We examined associations with overall breast cancer as well as estrogen receptor (ER)-positive and negative subtypes (193,132 SNPs). We replicated associations in the African-ancestry Breast Cancer Genetic Consortium (AABCG). RESULTS: In AA women, we identified two associations on chr12q for overall breast cancer (rs1420647, OR = 1.15, p = 2.50×10-6; rs12322371, OR = 1.14, p = 3.15×10-6), and one for ER-negative breast cancer (rs77006600, OR = 1.67, p = 3.51×10-6). On chr3, we identified two associations with ER-negative disease (rs184090918, OR = 3.70, p = 1.23×10-5; rs76959804, OR = 3.57, p = 1.77×10-5) and on chr16q we identified an association with ER-negative disease (rs34147411, OR = 1.62, p = 8.82×10-6). In the replication study, the chr3 associations were significant and effect sizes were larger (rs184090918, OR: 6.66, 95% CI: 1.43, 31.01; rs76959804, OR: 5.24, 95% CI: 1.70, 16.16). CONCLUSION: The two chr3 SNPs are upstream to open chromatin ENSR00000710716, a regulatory feature that is actively regulated in mammary tissues, providing evidence that variants in this chr3 region may have a regulatory role in our target organ. Our study provides support for breast cancer variant discovery using prioritization based on linkage evidence.


Asunto(s)
Población Negra , Neoplasias de la Mama , Predisposición Genética a la Enfermedad , Femenino , Humanos , Población Negra/genética , Neoplasias de la Mama/genética , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple
5.
JNCI Cancer Spectr ; 7(6)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37862240

RESUMEN

BACKGROUND: This study was designed to identify common genetic susceptibility and shared genetic variants associated with acute radiation-induced toxicity across 4 cancer types (prostate, head and neck, breast, and lung). METHODS: A genome-wide association study meta-analysis was performed using 19 cohorts totaling 12 042 patients. Acute standardized total average toxicity (STATacute) was modelled using a generalized linear regression model for additive effect of genetic variants, adjusted for demographic and clinical covariates (rSTATacute). Linkage disequilibrium score regression estimated shared single-nucleotide variation (SNV-formerly SNP)-based heritability of rSTATacute in all patients and for each cancer type. RESULTS: Shared SNV-based heritability of STATacute among all cancer types was estimated at 10% (SE = 0.02) and was higher for prostate (17%, SE = 0.07), head and neck (27%, SE = 0.09), and breast (16%, SE = 0.09) cancers. We identified 130 suggestive associated SNVs with rSTATacute (5.0 × 10‒8 < P < 1.0 × 10‒5) across 25 genomic regions. rs142667902 showed the strongest association (effect allele A; effect size ‒0.17; P = 1.7 × 10‒7), which is located near DPPA4, encoding a protein involved in pluripotency in stem cells, which are essential for repair of radiation-induced tissue injury. Gene-set enrichment analysis identified 'RNA splicing via endonucleolytic cleavage and ligation' (P = 5.1 × 10‒6, P = .079 corrected) as the top gene set associated with rSTATacute among all patients. In silico gene expression analysis showed that the genes associated with rSTATacute were statistically significantly up-regulated in skin (not sun exposed P = .004 corrected; sun exposed P = .026 corrected). CONCLUSIONS: There is shared SNV-based heritability for acute radiation-induced toxicity across and within individual cancer sites. Future meta-genome-wide association studies among large radiation therapy patient cohorts are worthwhile to identify the common causal variants for acute radiotoxicity across cancer types.


Asunto(s)
Estudio de Asociación del Genoma Completo , Neoplasias , Masculino , Humanos , Neoplasias/genética , Neoplasias/radioterapia , Mama , Predisposición Genética a la Enfermedad
6.
Eur J Epidemiol ; 38(10): 1053-1068, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37789226

RESUMEN

Light-at-night triggers the decline of pineal gland melatonin biosynthesis and secretion and is an IARC-classified probable breast-cancer risk factor. We applied a large-scale molecular epidemiology approach to shed light on the putative role of melatonin in breast cancer. We investigated associations between breast-cancer risk and polymorphisms at genes of melatonin biosynthesis/signaling using a study population of 44,405 women from the Breast Cancer Association Consortium (22,992 cases, 21,413 population-based controls). Genotype data of 97 candidate single nucleotide polymorphisms (SNPs) at 18 defined gene regions were investigated for breast-cancer risk effects. We calculated adjusted odds ratios (ORs) and 95% confidence intervals (CI) by logistic regression for the main-effect analysis as well as stratified analyses by estrogen- and progesterone-receptor (ER, PR) status. SNP-SNP interactions were analyzed via a two-step procedure based on logic regression. The Bayesian false-discovery probability (BFDP) was used for all analyses to account for multiple testing. Noteworthy associations (BFDP < 0.8) included 10 linked SNPs in tryptophan hydroxylase 2 (TPH2) (e.g. rs1386492: OR = 1.07, 95% CI 1.02-1.12), and a SNP in the mitogen-activated protein kinase 8 (MAPK8) (rs10857561: OR = 1.11, 95% CI 1.04-1.18). The SNP-SNP interaction analysis revealed noteworthy interaction terms with TPH2- and MAPK-related SNPs (e.g. rs1386483R ∧ rs1473473D ∧ rs3729931D: OR = 1.20, 95% CI 1.09-1.32). In line with the light-at-night hypothesis that links shift work with elevated breast-cancer risks our results point to SNPs in TPH2 and MAPK-genes that may impact the intricate network of circadian regulation.


Asunto(s)
Neoplasias de la Mama , Melatonina , Humanos , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/epidemiología , Melatonina/genética , Melatonina/metabolismo , Teorema de Bayes , Polimorfismo de Nucleótido Simple , Modelos Logísticos , Estudios de Casos y Controles , Predisposición Genética a la Enfermedad
7.
Front Genet ; 14: 1248492, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37790698

RESUMEN

Introduction: It is estimated that around 5% of breast cancer cases carry pathogenic variants in established breast cancer susceptibility genes. However, the underlying prevalence and gene-specific population risk estimates in Cyprus are currently unknown. Methods: We performed sequencing on a population-based case-control study of 990 breast cancer cases and 1094 controls from Cyprus using the BRIDGES sequencing panel. Analyses were conducted separately for protein-truncating and rare missense variants. Results: Protein-truncating variants in established breast cancer susceptibility genes were detected in 3.54% of cases and 0.37% of controls. Protein-truncating variants in BRCA2 and ATM were associated with a high risk of breast cancer, whereas PTVs in BRCA1 and PALB2 were associated with a high risk of estrogen receptor (ER)-negative disease. Among participants with a family history of breast cancer, PTVs in ATM, BRCA2, BRCA1, PALB2 and RAD50 were associated with an increased risk of breast cancer. Furthermore, an additional 19.70% of cases and 17.18% of controls had at least one rare missense variant in established breast cancer susceptibility genes. For BRCA1 and PALB2, rare missense variants were associated with an increased risk of overall and triple-negative breast cancer, respectively. Rare missense variants in BRCA1, ATM, CHEK2 and PALB2 domains, were associated with increased risk of disease subtypes. Conclusion: This study provides population-based prevalence and gene-specific risk estimates for protein-truncating and rare missense variants. These results may have important clinical implications for women who undergo genetic testing and be pivotal for a substantial proportion of breast cancer patients in Cyprus.

8.
Breast Cancer Res ; 25(1): 111, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37784177

RESUMEN

BACKGROUND: Latin American and Hispanic women are less likely to develop breast cancer (BC) than women of European descent. Observational studies have found an inverse relationship between the individual proportion of Native American ancestry and BC risk. Here, we use ancestry-informative markers to rule out potential confounding of this relationship, estimating the confounder-free effect of Native American ancestry on BC risk. METHODS AND STUDY POPULATION: We used the informativeness for assignment measure to select robust instrumental variables for the individual proportion of Native American ancestry. We then conducted separate Mendelian randomization (MR) analyses based on 1401 Colombian women, most of them from the central Andean regions of Cundinamarca and Huila, and 1366 Mexican women from Mexico City, Monterrey and Veracruz, supplemented by sensitivity and stratified analyses. RESULTS: The proportion of Colombian Native American ancestry showed a putatively causal protective effect on BC risk (inverse variance-weighted odds ratio [OR] = 0.974 per 1% increase in ancestry proportion, 95% confidence interval [CI] 0.970-0.978, p = 3.1 × 10-40). The corresponding OR for Mexican Native American ancestry was 0.988 (95% CI 0.987-0.990, p = 1.4 × 10-44). Stratified analyses revealed a stronger association between Native American ancestry and familial BC (Colombian women: OR = 0.958, 95% CI 0.952-0.964; Mexican women: OR = 0.973, 95% CI 0.969-0.978), and stronger protective effects on oestrogen receptor (ER)-positive BC than on ER-negative and triple-negative BC. CONCLUSIONS: The present results point to an unconfounded protective effect of Native American ancestry on BC risk in both Colombian and Mexican women which appears to be stronger for familial and ER-positive BC. These findings provide a rationale for personalised prevention programmes that take genetic ancestry into account, as well as for future admixture mapping studies.


Asunto(s)
Indio Americano o Nativo de Alaska , Neoplasias de la Mama , Femenino , Humanos , Indio Americano o Nativo de Alaska/etnología , Indio Americano o Nativo de Alaska/genética , Indio Americano o Nativo de Alaska/estadística & datos numéricos , Mama , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/etnología , Neoplasias de la Mama/genética , Colombia/epidemiología , México/epidemiología , Neoplasias de la Mama Triple Negativas/epidemiología , Neoplasias de la Mama Triple Negativas/etnología , Neoplasias de la Mama Triple Negativas/genética
10.
Nat Genet ; 55(9): 1435-1439, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37592023

RESUMEN

Linkage and candidate gene studies have identified several breast cancer susceptibility genes, but the overall contribution of coding variation to breast cancer is unclear. To evaluate the role of rare coding variants more comprehensively, we performed a meta-analysis across three large whole-exome sequencing datasets, containing 26,368 female cases and 217,673 female controls. Burden tests were performed for protein-truncating and rare missense variants in 15,616 and 18,601 genes, respectively. Associations between protein-truncating variants and breast cancer were identified for the following six genes at exome-wide significance (P < 2.5 × 10-6): the five known susceptibility genes ATM, BRCA1, BRCA2, CHEK2 and PALB2, together with MAP3K1. Associations were also observed for LZTR1, ATR and BARD1 with P < 1 × 10-4. Associations between predicted deleterious rare missense or protein-truncating variants and breast cancer were additionally identified for CDKN2A at exome-wide significance. The overall contribution of coding variants in genes beyond the previously known genes is estimated to be small.


Asunto(s)
Exoma , Neoplasias , Femenino , Humanos , Secuenciación del Exoma , Exoma/genética , Mutación Missense/genética
11.
Breast Cancer Res ; 25(1): 93, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37559094

RESUMEN

BACKGROUND: Genome-wide studies of gene-environment interactions (G×E) may identify variants associated with disease risk in conjunction with lifestyle/environmental exposures. We conducted a genome-wide G×E analysis of ~ 7.6 million common variants and seven lifestyle/environmental risk factors for breast cancer risk overall and for estrogen receptor positive (ER +) breast cancer. METHODS: Analyses were conducted using 72,285 breast cancer cases and 80,354 controls of European ancestry from the Breast Cancer Association Consortium. Gene-environment interactions were evaluated using standard unconditional logistic regression models and likelihood ratio tests for breast cancer risk overall and for ER + breast cancer. Bayesian False Discovery Probability was employed to assess the noteworthiness of each SNP-risk factor pairs. RESULTS: Assuming a 1 × 10-5 prior probability of a true association for each SNP-risk factor pairs and a Bayesian False Discovery Probability < 15%, we identified two independent SNP-risk factor pairs: rs80018847(9p13)-LINGO2 and adult height in association with overall breast cancer risk (ORint = 0.94, 95% CI 0.92-0.96), and rs4770552(13q12)-SPATA13 and age at menarche for ER + breast cancer risk (ORint = 0.91, 95% CI 0.88-0.94). CONCLUSIONS: Overall, the contribution of G×E interactions to the heritability of breast cancer is very small. At the population level, multiplicative G×E interactions do not make an important contribution to risk prediction in breast cancer.


Asunto(s)
Neoplasias de la Mama , Interacción Gen-Ambiente , Adulto , Femenino , Humanos , Predisposición Genética a la Enfermedad , Neoplasias de la Mama/etiología , Neoplasias de la Mama/genética , Teorema de Bayes , Estudio de Asociación del Genoma Completo , Factores de Riesgo , Polimorfismo de Nucleótido Simple , Estudios de Casos y Controles
12.
J Med Genet ; 60(12): 1186-1197, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37451831

RESUMEN

BACKGROUND: Polygenic risk score (PRS), calculated based on genome-wide association studies (GWASs), can improve breast cancer (BC) risk assessment. To date, most BC GWASs have been performed in individuals of European (EUR) ancestry, and the generalisation of EUR-based PRS to other populations is a major challenge. In this study, we examined the performance of EUR-based BC PRS models in Ashkenazi Jewish (AJ) women. METHODS: We generated PRSs based on data on EUR women from the Breast Cancer Association Consortium (BCAC). We tested the performance of the PRSs in a cohort of 2161 AJ women from Israel (1437 cases and 724 controls) from BCAC (BCAC cohort from Israel (BCAC-IL)). In addition, we tested the performance of these EUR-based BC PRSs, as well as the established 313-SNP EUR BC PRS, in an independent cohort of 181 AJ women from Hadassah Medical Center (HMC) in Israel. RESULTS: In the BCAC-IL cohort, the highest OR per 1 SD was 1.56 (±0.09). The OR for AJ women at the top 10% of the PRS distribution compared with the middle quintile was 2.10 (±0.24). In the HMC cohort, the OR per 1 SD of the EUR-based PRS that performed best in the BCAC-IL cohort was 1.58±0.27. The OR per 1 SD of the commonly used 313-SNP BC PRS was 1.64 (±0.28). CONCLUSIONS: Extant EUR GWAS data can be used for generating PRSs that identify AJ women with markedly elevated risk of BC and therefore hold promise for improving BC risk assessment in AJ women.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/genética , Estudio de Asociación del Genoma Completo , Judíos/genética , Israel/epidemiología , Predisposición Genética a la Enfermedad , Factores de Riesgo , Herencia Multifactorial/genética , Factores de Transcripción
13.
Cancers (Basel) ; 15(13)2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37444426

RESUMEN

FANCM germline protein truncating variants (PTVs) are moderate-risk factors for ER-negative breast cancer. We previously described the spectrum of FANCM PTVs in 114 European breast cancer cases. In the present, larger cohort, we report the spectrum and frequency of four common and 62 rare FANCM PTVs found in 274 carriers detected among 44,803 breast cancer cases. We confirmed that p.Gln1701* was the most common PTV in Northern Europe with lower frequencies in Southern Europe. In contrast, p.Gly1906Alafs*12 was the most common PTV in Southern Europe with decreasing frequencies in Central and Northern Europe. We verified that p.Arg658* was prevalent in Central Europe and had highest frequencies in Eastern Europe. We also confirmed that the fourth most common PTV, p.Gln498Thrfs*7, might be a founder variant from Lithuania. Based on the frequency distribution of the carriers of rare PTVs, we showed that the FANCM PTVs spectra in Southwestern and Central Europe were much more heterogeneous than those from Northeastern Europe. These findings will inform the development of more efficient FANCM genetic testing strategies for breast cancer cases from specific European populations.

14.
Cancer Med ; 12(15): 16142-16162, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37401034

RESUMEN

BACKGROUND: Breast cancer (BC) patients with a germline CHEK2 c.1100delC variant have an increased risk of contralateral BC (CBC) and worse BC-specific survival (BCSS) compared to non-carriers. AIM: To assessed the associations of CHEK2 c.1100delC, radiotherapy, and systemic treatment with CBC risk and BCSS. METHODS: Analyses were based on 82,701 women diagnosed with a first primary invasive BC including 963 CHEK2 c.1100delC carriers; median follow-up was 9.1 years. Differential associations with treatment by CHEK2 c.1100delC status were tested by including interaction terms in a multivariable Cox regression model. A multi-state model was used for further insight into the relation between CHEK2 c.1100delC status, treatment, CBC risk and death. RESULTS: There was no evidence for differential associations of therapy with CBC risk by CHEK2 c.1100delC status. The strongest association with reduced CBC risk was observed for the combination of chemotherapy and endocrine therapy [HR (95% CI): 0.66 (0.55-0.78)]. No association was observed with radiotherapy. Results from the multi-state model showed shorter BCSS for CHEK2 c.1100delC carriers versus non-carriers also after accounting for CBC occurrence [HR (95% CI): 1.30 (1.09-1.56)]. CONCLUSION: Systemic therapy was associated with reduced CBC risk irrespective of CHEK2 c.1100delC status. Moreover, CHEK2 c.1100delC carriers had shorter BCSS, which appears not to be fully explained by their CBC risk.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/radioterapia , Quinasa de Punto de Control 2/genética , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Heterocigoto , Modelos de Riesgos Proporcionales
15.
NPJ Breast Cancer ; 9(1): 37, 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37173335

RESUMEN

We assessed the PREDICT v 2.2 for prognosis of breast cancer patients with pathogenic germline BRCA1 and BRCA2 variants, using follow-up data from 5453 BRCA1/2 carriers from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) and the Breast Cancer Association Consortium (BCAC). PREDICT for estrogen receptor (ER)-negative breast cancer had modest discrimination for BRCA1 carrier patients overall (Gönen & Heller unbiased concordance 0.65 in CIMBA, 0.64 in BCAC), but it distinguished clearly the high-mortality group from lower risk categories. In an analysis of low to high risk categories by PREDICT score percentiles, the observed mortality was consistently lower than the expected mortality, but the confidence intervals always included the calibration slope. Altogether, our results encourage the use of the PREDICT ER-negative model in management of breast cancer patients with germline BRCA1 variants. For the PREDICT ER-positive model, the discrimination was slightly lower in BRCA2 variant carriers (concordance 0.60 in CIMBA, 0.65 in BCAC). Especially, inclusion of the tumor grade distorted the prognostic estimates. The breast cancer mortality of BRCA2 carriers was underestimated at the low end of the PREDICT score distribution, whereas at the high end, the mortality was overestimated. These data suggest that BRCA2 status should also be taken into consideration with tumor characteristics, when estimating the prognosis of ER-positive breast cancer patients.

16.
Res Sq ; 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36824750

RESUMEN

Breast cancer (BC) patients with a germline CHEK2 c.1100delC variant have an increased risk of contralateral BC (CBC) and worse BC-specific survival (BCSS) compared to non-carriers. We aimed to assess the associations of CHEK2 c.1100delC, radiotherapy, and systemic treatment with CBC risk and BCSS. Analyses were based on 82,701 women diagnosed with invasive BC including 963 CHEK2 c.1100delC carriers; median follow-up was 9.1 years. Differential associations of treatment by CHEK2 c.1100delC status were tested by including interaction terms in a multivariable Cox regression model. A multi-state model was used for further insight into the relation between CHEK2 c.1100delC status, treatment, CBC risk and death. There was no evidence for differential associations of therapy with CBC risk by CHEK2 c.1100delC status The strongest association with reduced CBC risk was observed for the combination of chemotherapy and endocrine therapy [HR(95%CI): 0.66 (0.55-0.78)]. No association was observed with radiotherapy. Results from the multi-state model showed shorter BCSS for CHEK2 c.1100delC carriers versus non-carriers also after accounting for CBC occurrence [HR(95%CI) :1.30 (1.09-1.56)]. In conclusion, systemic therapy was associated with reduced CBC risk irrespective of CHEK2 c.1100delC status. Moreover, CHEK2 c.1100delC carriers had shorter BCSS, which appears not to be fully explained by their CBC risk. (Main MS: 3201 words).

17.
medRxiv ; 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36778285

RESUMEN

Mosaic loss of the X chromosome (mLOX) is the most commonly occurring clonal somatic alteration detected in the leukocytes of women, yet little is known about its genetic determinants or phenotypic consequences. To address this, we estimated mLOX in >900,000 women across eight biobanks, identifying 10% of women with detectable X loss in approximately 2% of their leukocytes. Out of 1,253 diseases examined, women with mLOX had an elevated risk of myeloid and lymphoid leukemias and pneumonia. Genetic analyses identified 49 common variants influencing mLOX, implicating genes with established roles in chromosomal missegregation, cancer predisposition, and autoimmune diseases. Complementary exome-sequence analyses identified rare missense variants in FBXO10 which confer a two-fold increased risk of mLOX. A small fraction of these associations were shared with mosaic Y chromosome loss in men, suggesting different biological processes drive the formation and clonal expansion of sex chromosome missegregation events. Allelic shift analyses identified alleles on the X chromosome which are preferentially retained, demonstrating that variation at many loci across the X chromosome is under cellular selection. A novel polygenic score including 44 independent X chromosome allelic shift loci correctly inferred the retained X chromosomes in 80.7% of mLOX cases in the top decile. Collectively our results support a model where germline variants predispose women to acquiring mLOX, with the allelic content of the X chromosome possibly shaping the magnitude of subsequent clonal expansion.

18.
Am J Hum Genet ; 110(3): 475-486, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36827971

RESUMEN

Evidence linking coding germline variants in breast cancer (BC)-susceptibility genes other than BRCA1, BRCA2, and CHEK2 with contralateral breast cancer (CBC) risk and breast cancer-specific survival (BCSS) is scarce. The aim of this study was to assess the association of protein-truncating variants (PTVs) and rare missense variants (MSVs) in nine known (ATM, BARD1, BRCA1, BRCA2, CHEK2, PALB2, RAD51C, RAD51D, and TP53) and 25 suspected BC-susceptibility genes with CBC risk and BCSS. Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated with Cox regression models. Analyses included 34,401 women of European ancestry diagnosed with BC, including 676 CBCs and 3,449 BC deaths; the median follow-up was 10.9 years. Subtype analyses were based on estrogen receptor (ER) status of the first BC. Combined PTVs and pathogenic/likely pathogenic MSVs in BRCA1, BRCA2, and TP53 and PTVs in CHEK2 and PALB2 were associated with increased CBC risk [HRs (95% CIs): 2.88 (1.70-4.87), 2.31 (1.39-3.85), 8.29 (2.53-27.21), 2.25 (1.55-3.27), and 2.67 (1.33-5.35), respectively]. The strongest evidence of association with BCSS was for PTVs and pathogenic/likely pathogenic MSVs in BRCA2 (ER-positive BC) and TP53 and PTVs in CHEK2 [HRs (95% CIs): 1.53 (1.13-2.07), 2.08 (0.95-4.57), and 1.39 (1.13-1.72), respectively, after adjusting for tumor characteristics and treatment]. HRs were essentially unchanged when censoring for CBC, suggesting that these associations are not completely explained by increased CBC risk, tumor characteristics, or treatment. There was limited evidence of associations of PTVs and/or rare MSVs with CBC risk or BCSS for the 25 suspected BC genes. The CBC findings are relevant to treatment decisions, follow-up, and screening after BC diagnosis.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Neoplasias de la Mama/genética , Genes BRCA2 , Mutación de Línea Germinal , Células Germinativas , Predisposición Genética a la Enfermedad
19.
Cancer Epidemiol Biomarkers Prev ; 32(3): 422-427, 2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36649146

RESUMEN

BACKGROUND: The multifactorial risk prediction model BOADICEA enables identification of women at higher or lower risk of developing breast cancer. BOADICEA models genetic susceptibility in terms of the effects of rare variants in breast cancer susceptibility genes and a polygenic component, decomposed into an unmeasured and a measured component - the polygenic risk score (PRS). The current version was developed using a 313 SNP PRS. Here, we evaluated approaches to incorporating this PRS and alternative PRS in BOADICEA. METHODS: The mean, SD, and proportion of the overall polygenic component explained by the PRS (α2) need to be estimated. $\alpha $ was estimated using logistic regression, where the age-specific log-OR is constrained to be a function of the age-dependent polygenic relative risk in BOADICEA; and using a retrospective likelihood (RL) approach that models, in addition, the unmeasured polygenic component. RESULTS: Parameters were computed for 11 PRS, including 6 variations of the 313 SNP PRS used in clinical trials and implementation studies. The logistic regression approach underestimates $\alpha $, as compared with the RL estimates. The RL $\alpha $ estimates were very close to those obtained by assuming proportionality to the OR per 1 SD, with the constant of proportionality estimated using the 313 SNP PRS. Small variations in the SNPs included in the PRS can lead to large differences in the mean. CONCLUSIONS: BOADICEA can be readily adapted to different PRS in a manner that maintains consistency of the model. IMPACT: : The methods described facilitate comprehensive breast cancer risk assessment.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/genética , Medición de Riesgo/métodos , Estudios Retrospectivos , Factores de Riesgo , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple
20.
Genome Med ; 15(1): 7, 2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36703164

RESUMEN

BACKGROUND: Low-frequency variants play an important role in breast cancer (BC) susceptibility. Gene-based methods can increase power by combining multiple variants in the same gene and help identify target genes. METHODS: We evaluated the potential of gene-based aggregation in the Breast Cancer Association Consortium cohorts including 83,471 cases and 59,199 controls. Low-frequency variants were aggregated for individual genes' coding and regulatory regions. Association results in European ancestry samples were compared to single-marker association results in the same cohort. Gene-based associations were also combined in meta-analysis across individuals with European, Asian, African, and Latin American and Hispanic ancestry. RESULTS: In European ancestry samples, 14 genes were significantly associated (q < 0.05) with BC. Of those, two genes, FMNL3 (P = 6.11 × 10-6) and AC058822.1 (P = 1.47 × 10-4), represent new associations. High FMNL3 expression has previously been linked to poor prognosis in several other cancers. Meta-analysis of samples with diverse ancestry discovered further associations including established candidate genes ESR1 and CBLB. Furthermore, literature review and database query found further support for a biologically plausible link with cancer for genes CBLB, FMNL3, FGFR2, LSP1, MAP3K1, and SRGAP2C. CONCLUSIONS: Using extended gene-based aggregation tests including coding and regulatory variation, we report identification of plausible target genes for previously identified single-marker associations with BC as well as the discovery of novel genes implicated in BC development. Including multi ancestral cohorts in this study enabled the identification of otherwise missed disease associations as ESR1 (P = 1.31 × 10-5), demonstrating the importance of diversifying study cohorts.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/genética , Predisposición Genética a la Enfermedad , Población Negra , Pruebas Genéticas , Estudio de Asociación del Genoma Completo/métodos , Polimorfismo de Nucleótido Simple , Forminas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...